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Abstract

The (M:1)-resonant bands in the left and right potential wells are skew-symmetric, and the (2M:1)-
resonant bands of the large orbit motion are symmetric. The analytical conditions for the onset and
destruction of a resonant band are developed through the incremental energy approach. The numerical
predictions of such onset and destruction are also completed by the energy increment spectrum method.
The sub-resonance interaction occurs for strong excitations, which needs to be further investigated. These
results are applicable to the small- and large-orbit motions of post-buckled structure under a parametric
excitation.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a Mathieu–Duffing oscillator with a twin-well potential,

.x � ½a1 þ Q0 cosðOtÞ�x þ a2x3 ¼ 0; ð1Þ

where system parameters a1 > 0 and a2 > 0 are relative to linear and non-linear terms in the
equations of motion for buckled structures. The longitudinal loading is periodic, and Q0 and O
are the excitation strength and frequency of the periodic loading, respectively. For weak
excitations, Yamaguchi [1] in 1985 investigated the structure of stochastic layer for such an
oscillator through the Chirikov overlap presented in Ref. [2]. The chaotic motion in the vicinity of
generic separatrix (i.e., stochastic layer or the generic separatrix band) for such an oscillator is
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investigated [3]. It was found that the resonance embedded in the generic separatrix band was
different from what the traditional analysis gives. For a clear understanding of the resonant
dynamics of chaotic motion in such an oscillator, the chaotic motion in the vicinity of a specified,
resonant separatrix band will be of great interest.
In 1868, Mathieu [4] for at the first time investigated the linear Mathieu equation (also see Refs.

[5,6]). In 1913, Whittaker [7] developed an approach to find the unstable solution for very weak
excitation (also see Ref. [8]). In addition, other contributions to the solutions of the Mathieu
equations can be found (e.g., Ref. [9]). The aforementioned investigations were based on the
purely mathematical discussion. However, in engineering, Sevin [10] investigated the parametric
excitation of a pendulum-type vibration absorber via the linear Mathieu equation in 1961. In
1965, Hsu [11] developed the first-approximation analysis and instability criteria for a
parametrically excited, linear system with multiple degrees of freedom, and further results were
presented in Ref. [12]. In 1965, Tso and Caughey [13] investigated the parametric vibration of a
non-linear system through the slowly varying parameter technique, and in 1993, Mond et al. [14]
investigated the stability analysis of non-linear Mathieu equation though the normal form
technique. Such a technique cannot provide quantitative predictions of chaotic motions in
parametric oscillators. The quasi-periodic Mathieu oscillators were also investigated in Ref. [15].
In 1962, Melnikov [16] discussed the resonant motion in the resonant separatrix based on the

perturbation analysis (also see Ref. [17]). In 1964, the chaotic motion in the vicinity of resonant
separatrix was observed by Henon and Heiles [18] through the numerical simulation of the
internal resonant layer in a two-degrees of freedom, non-linear system. In 1979, Chirikov [2]
investigated such a problem through the whisker map, and the Chirikov resonance overlap
criterion was proposed. Based on the Chirikov’s concept, in 1981, Escande and Doveil [19]
developed the renormalization group scheme to determine the overlap of two resonant bands, and
the detailed discussion was presented in Ref. [20]. In 1992, Lichtenberg and Lieberman [21] gave
the qualitative description of chaotic motions in the resonant layer (or band). Because it is difficult
to determine the location of the resonant separatrix, it seemed that the analytical and numerical
predictions of the forming and destruction of resonant layers were impossible. In 1995, Luo [22]
proposed an analytical approach (i.e., the incremental energy approach) to determine the onset of
the resonant layer in non-linear Hamiltonian systems with periodic excitations (also see Ref. [23]).
In 1999, Luo and Han [24] modified the Chirikov overlap approach to investigate the chaotic
motion in resonant bands, and the corresponding criteria for the resonant overlap were given. The
two analytical methods are based on the certain approximation assumptions. To verify the two
approaches, in 2002, Luo [25] developed an energy increment spectrum method to numerically
predict the onset and disappearance of the resonant bands, and such an approach was applied to
the parametrically excited pendulum. Since the Mathieu–Duffing oscillator is extensively used for
parametric non-linear vibrations in engineering, it is important to better understand its non-linear
dynamical characteristics. To extend work in Ref. [3], herein, the chaotic motion in the primary
resonance band will be investigated.
In this paper, the approximate criteria for the onset and destruction of a specified, primary

resonant band of the Mathieu–Duffing oscillator will be developed. The numerical investigation
on the appearance and disappearance of the specified primary resonant band will be completed.
Numerical simulations will be carried out for illustration of the resonant bands in the
Mathieu–Duffing oscillator.
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2. Energy analysis and resonance

The total energy for Eq. (1) is H ¼ H0 þ H1; where the time-independent H0 (unperturbed) and
time-dependent H1 (perturbation) in the Hamiltonian of Eq. (1) are

H0 ¼ 1
2 ’x

2 � 1
2
a1x2 þ 1

4
a2x4; H1 ¼ �1

2
x2Q0 cosðOtÞ: ð2Þ

The unperturbed system of Eq. (1) possesses a homoclinic separatrix related to the saddle point
ð0; 0Þ for H0 ¼ E0 ¼ 0: This separatrix separates the motions of the unperturbed Duffing oscillator
into large and small orbit motions. The small orbit motion is in one of the two potential wells, and
the large orbit motion is located outside the two potential wells. Hence, under a periodic
excitation, the resonance for the two motions will occur. For enough strong excitations, the
resonant separatrix will be developed. Furthermore, the chaotic motions in the vicinity of such a
resonant separatrix associated with small and large orbit motion are investigated.

2.1. Small orbit motion

For a given energy H0 ¼ EsoE0 ¼ 0; the solution of the small orbit motion without the
excitation in Refs. [3,22] is

x0
s ¼ 7es dn

KðksÞost

p
; ks

� �
; ð3Þ

where dn is the Jacobi–elliptic function, KðkÞ the complete elliptic integral of the first kind and k
the modulus of the Jacobi–elliptic function, and the subscript s denotes the small orbit. The
modulus ks; the response amplitude es and the natural frequency os are

ks ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ 4a2Es

q
a1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ 4a2Es

q
vuuut ; es ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a1

ð2� k2
aÞa2

s
; os ¼

ffiffiffiffiffi
a2

p
espffiffiffi

2
p

KðksÞ
: ð4Þ

As the unperturbed solution in Eq. (3) is used to approximate the perturbed one, the total
energy is approximated by

H ¼ H0ðx; yÞ � 1
2

x2Q0 cosðOtÞEEs � 1
2
ðx0

s Þ
2Q0 cosðOtÞ: ð5Þ

To show how to obtain the foregoing approximation, consider a small perturbation excitation
(i.e., Q0Be): a perturbed solution ðx ¼ x0 þ ex1 þ?Þ is inserted in the middle part of Eq. (5) and
the higher order ðen; nX2Þ perturbation terms are dropped. Further, the last part of Eq. (5) is
obtained. As in Refs. [22,24], substitution of Eq. (3) into Eq. (5) and a Fourier expansion of the
time-dependent term gives

HEEs �
p2e2s Q0

4K2

1

2
cosOt þ

XN
M¼1

pM þ
1

2

XN
m¼1

XN
n¼1

ðpmpnd
M
mþn þ pmpnd

M
jm�njÞ

" #(

	 ½cosðMos � OÞt þ cosðMos þ OÞt�

)
; ð6Þ
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where

pm ¼ sech
mpK 0

K

� �
and K 0ðksÞ ¼ Kðk0

sÞ; k0
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

s

q
: ð7Þ

From the averaging of the Hamiltonians in Eq. (6), %H ¼ 1
T

R T

0 Hðx; y; tÞ dt should be bounded,
which gives the resonant condition (as in Ref. [21]) as

Mos ¼ O and M ¼ fm þ n; jm � njg: ð8Þ

Note that the resonance relative to po ¼ qO is termed the ðp:qÞ resonance. Therefore, in the small
orbit motion, the ðM:1Þ-resonant motion exists.

2.2. Large orbit motion

In a similar fashion, for H0 ¼ El > E0 ¼ 0; the solution of the large orbit motion [3,22] is

x0
l ¼ el cn

2KðklÞol t

p
; kl

� �
: ð9Þ

The modulus kl ; the response amplitude el ; and the natural frequency ol are

kl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ 4a2El

q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ 4a2El

q
vuuut ; el ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2

l a1
ð2k2

l � 1Þa2

s
; ol ¼

ffiffiffiffiffi
a2

p
elp

2
ffiffiffi
2

p
klKðklÞ

: ð10Þ

Use of the unperturbed solution in Eq. (9) as a perturbed one and a Fourier expansion of the time-
dependent term in the total energy gives

HEEl �
1

2
ðx0

l Þ
2Q0 cosðOtÞ

¼El �
p2e2l Q0

8k2
l K2

XN
M¼1

XN
m¼1

XN
n¼1

ðq2m�1q2n�1d
2M
2ðmþn�1Þ þ q2m�1q2n�1d

2M
2jm�njÞ

	 ½cosð2Mol � OÞt þ cosð2Mol þ OÞt�; ð11Þ

where

qm ¼ sech m �
1

2

� �
pK 0

K

� �
and K 0ðklÞ ¼ Kðk0

lÞ; k0
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

l

q
: ð12Þ

In an alike manner, from Eq. (11), the bounded averaging of the Hamiltonians gives the resonant
condition (as in Ref. [21]):

2Mol ¼ O and M ¼ fm þ n � 1; jm � njg: ð13Þ

From traditional analysis (e.g., linearization and perturbation or normal form), the resonant
condition in potential wells should be ð2M:1Þ and outside potential wells it should be
ð2ð2M � 1Þ:1Þ: However, based on the above energy analysis, the resonant conditions for the
two cases become ðM:1Þ and ð2M:1Þ: Especially, the resonant conditions in the two potential wells
of the Mathieu–Duffing oscillator are the same as in the two potential wells of the forced Duffing
oscillator in Refs. [22–24]. That is why resonant conditions for non-linear dynamic systems
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hindered one to investigate the resonant motions. Therefore, one just assumed a resonant
condition (e.g., (1:1) or (2:1)) based on intuitive observation to analyze the corresponding
dynamic behaviors through such as perturbation, linearization, normal form, etc. From a
literature survey, it can be found that the assumed resonant conditions for internal resonance are
very popular, which may not be a proper way to work out resonant motions in non-linear systems
(also see Ref. [2]).

3. Energy increment spectrum

Luo [25] developed an energy increment spectrum approach for the numerical prediction of the
onset and disappearance of the resonant band (or the resonant separatrix band). Such an energy
increment spectrum approach is used for determining the critical value of excitation frequency for
a given excitation strength. This energy increment spectrum is based on the energy of the Poincar!e
mapping points of the separatrix band. The Poincar!e mapping points for the twin-well Duffing
oscillator are defined through the section:

S ¼ ðxðtNÞ; ’xðtNÞÞj satisfying Eq: ð1Þ; and tN ¼
2Np
O

þ t0;N ¼ 0; 1;y

� �
; ð14Þ

where xðtNÞ ¼ xN ; ’xðtNÞ ¼ ’xN and the initial conditions are xðt0Þ ¼ x0; ’xðt0Þ ¼ ’x0 at t ¼ t0: The
Poincar!e map is P:S-S: The energy for each Poincar!e mapping point of the Duffing oscillator
for iteration time N is computed through

H
ðNÞ
0 ¼ 1

2 ’x
2
N � 1

2
a1x2

N þ 1
4
a2x4

N ; ð15Þ

and the corresponding minimum and maximum energy increments are defined through

DEmax ¼ max
N-N

fH
ðNÞ
0 � EðM:1Þ

s g and DEmin ¼ min
N-N

fH
ðNÞ
0 � EðM:1Þ

s g ð16Þ

for the ðM:1Þ-resonance relative to the small orbit motion, and

DEmax ¼ max
N-N

fH
ðNÞ
0 � E

ð2M:1Þ
l g and DEmin ¼ min

N-N

fH
ðNÞ
0 � E

ð2M:1Þ
l g ð17Þ

for the ð2M:1Þ-resonance relative to the large orbit motion.
Herein, the resonant energies EðM:1Þ

s (or E
ð2M:1Þ
l Þ are computed through the corresponding

resonant conditions. Namely, once an excitation frequency O is given, the resonant condition in
Eq. (8) (or Eq. (13)) gives the natural frequency os (or ol). Furthermore, the resonant energy
EðM:1Þ

s (or E
ð2M:1Þ
l ) is computed by use of Eq. (4) (or Eq. (10)). From the foregoing definitions, the

maximum and minimum energy increment spectra are computed through a second order
symplectic scheme in Refs. [26,27] with time step Dt ¼ 10�6B10�7T ; where T ¼ 2p=O; and with a
precision of 10�8: Consider the parameter a1 ¼ a2 ¼ 1:0 in Eq. (1). Theoretically, exact critical
values for the appearance and disappearance of a specified resonant separatrix band should be
obtained as N-N: With increasing finite iteration numbers, the computational results of critical
values are much closer to the exact values. Note that the energy increment extrema in Eqs. (16)
and (17) are relative values for specified finite iteration numbers. From numerical simulation
experimentations, the critical results with a relative error of 1% are acceptable for 1000-periods of
iterations, compared to 106-periods of iteration. For 10 000-periods of iterations, the relative error
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percentages of the critical values of excitation frequency are less than 0.1%. Therefore, the
maximum and minimum energy increments are computed from 10 000 iterations of the Poincar!e
map for each excitation frequency instead of infinite iterations. In the two plots of Fig. 2, Oapp

and Odis denote excitation frequencies for the appearance and disappearance of the resonant
bands. In Fig. 1(a), the appearance and disappearance frequencies Oappð2:1Þ

s E2:2332655020 and
Odisð2:1Þ

s E2:1057711710: For the appearance of the (2:1)-resonant band, the minimum energy
increment drops suddenly with a large jump to a negative value. However, the disappearance of
the resonant band makes the maximum energy increment jump suddenly up to a positive value.
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Fig. 1. Maximum and minimum energy increment spectrums ða1 ¼ a2 ¼ 1Þ for (a) the ð2:1Þ-resonant band relative to

the small orbit motion ðQ0 ¼ 0:01Þ; and (b) the ð4:1Þ-resonant band relative to the large orbit motion ðQ0 ¼ 0:1Þ:
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The maximum energy of the resonant band increases to the higher order resonant energy. For
O > Odisð2:1Þ

s ; the minimum energy increment almost is zero. It indicates that the resonant
separatrix cannot be formed. Such a frequency range is termed the non-resonant band zone. At
O ¼ Odisð2:1Þ

s ; the maximum energy increment jumps to the higher energy level very close to the
homoclinic orbit energy level, and the (2:1)-resonant band relative to the small orbit motion is
destroyed. Furthermore, the stochastic layer appears. The chaotic motion will be generated by the
overlap between the stochastic layer and resonant band. Similarly, the energy increment spectrum
for the (4:1)-resonant band relative to the large orbit motion is illustrated in Fig. 1(b). We have
the two critical values Oappð4:1Þ

l E2:448938644 and Odisð4:1Þ
l E2:213713491: For the appearance of the

(4:1)-resonant band pertaining to the large orbit motion, the maximum energy increment jumps to
a new positive value, but the disappearance of the resonant band makes the minimum energy
increment drop to a negative value.

4. Approximate criteria

4.1. Small orbit motion

To develop analytical conditions, an energy increment along the inner ðM:1Þ-resonant orbit in
the two-wells needs to be computed. Such an energy increment is approximated by

DHs
0ðjiÞ ¼ 2

Z Tsþti

ti

½H0;H1� dt ¼ 2

Z Tsþti

ti

ðf1g2 � f2g1Þ dt

E 2

Z Tsþti

ti

xð0Þ
a yð0Þa Q0 cosðOtÞ dt ¼ 2Q0Q

ðM:1Þ
s sin ji; ð18Þ

where ji ¼ Oti; ½ . ; . � is the Poisson bract and

f1 ¼ y ¼ ’x; g1 ¼ a1x � a2x3;

f2 ¼ 0; g2 ¼ xQ0 cosOt; ð19Þ

QðM:1Þ
s ¼

p2O
Ka2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

2� k2

r
pM þ

1

2

XN
m¼1

XN
n¼1

ðpmpnd
M
mþn þ pmpnd

M
jm�njÞ

" #
: ð20Þ

The above integration is completed through the Fourier series expansion combined with the
ðM:1Þ-resonant condition.
From Eq. (4), the phase change under one period ðTs ¼ 2p=osÞ is computed by

DjsðEsÞ ¼
2pO
os

¼
2O

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� k2

s

p
KðksÞffiffiffiffiffi

a1
p : ð21Þ

Therefore, from the energy change in Eq. (18), DHs
0 ¼ Eðiþ1Þ

s � EðiÞ
s ; and the phase change Dj ¼

jiþ1 � ji for one period Ts; the accurate whisker map for the ðM:1Þ-resonant band of the
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Mathieu–Duffing oscillator is

Eðiþ1Þ
s � EðiÞ

s E2Q0Q
ðM:1Þ
s sin ji; and jiþ1 � ji ¼

2pO
os

¼
2O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ðksÞ

2
q

KðksÞffiffiffiffiffi
a1

p : ð22Þ

For the ðM:1Þ-resonant band, we assume jiþ1 � ji ¼ jðM:1Þ
iþ1 � jðM:1Þ

i ¼ 2Mp to satisfy the ðM:1Þ-
resonant condition in Eq. (18). From the second of Eqs. (22), the modulus kðM:1Þ

s can be computed,
and from which EðM:1Þ

s can be obtained. If Eðiþ1Þ
s ¼ EðiÞ

s ¼ EðM:1Þ
s ; the first equation of Eqs. (22)

gives jðM:1Þ
i ¼ 0; p: As in Ref. [21], using the energy and phase relative to the ðM:1Þ-resonance

leads to a standard map if wi ¼ ðEðiþ1Þ
s � EðM:1Þ

s ÞGðM:1Þ
s and fi ¼ ji � jðM:1Þ

i ; i.e.,

wiþ1 ¼ wi þ B sin fi and fiþ1Efi þ wiþ1; ð23Þ

where GðM:1Þ
s DHs

0ðjiÞ ¼ B sinfi and GðM:1Þ
s ¼ @ð2pO=osÞ=@EijEðM:1Þ

s
: For the foregoing, the strength

of the stochasticity parameter is B ¼ B�E0:9716? in Refs. [28,29] for the transition to global
stochasticity in Eq. (23). Therefore, the excitation strength for the onset of a resonant band is
approximated by

Q0E
0:4858

Q
ðM:1Þ
s G

ðM:1Þ
s

; ð24Þ

where

GðM:1Þ
s ¼ �

Oa2½2� ðkðM:1Þ
s Þ2�5=2

ðkðM:1Þ
s Þ4a21

ffiffiffiffiffi
a1

p 2KðkðM:1Þ
s Þ �

2� ðkðM:1Þ
s Þ2

1� ðkðM:1Þ
s Þ2

EðkðM:1Þ
s Þ

( )
: ð25Þ

As in Refs. [22,23], from Eq. (18), the incremental energy approach gives the approximate criteria
for destruction of the resonant separatrix band, i.e.,

Q0 ¼ min
1

2Q
ðM:1Þ
s

fjEðM:1Þ
s � EðM�1:1Þ

s j; jEðM:1Þ
s � EðMþ1:1Þ

s jg: ð26Þ

4.2. Large orbit motion

In a similar fashion, the energy increment for the ð2M:1Þ-resonant band under one period
ðTl ¼ 2p=olÞ is

DHl
0ðjiÞ ¼

Z Tlþti

ti

½H0;H1� dtE
Z Tlþti

ti

x
ð0Þ
l y

ð0Þ
l Q0 cosðOtÞ dt ¼ Q0Q

ð2M:1Þ
l sin ji ð27Þ

and

Q
ð2M:1Þ
l ¼

p2O
Ka2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

2k2
l � 1

r XN
m¼1

XN
n¼1

ðq2m�1q2n�1d
2M
2ðmþn�1Þ þ q2m�1q2n�1d

2M
2jm�njÞ: ð28Þ

The phase change under one period ðTl ¼ 2p=olÞ from Eq. (10) is

DjlðElÞ ¼
2pO
ol

¼
4OKðklÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2

l � 1
q
ffiffiffiffiffi
a1

p : ð29Þ
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Therefore, from Eq. (27) and phase change, the accurate whisker map for the ð2M:1Þ-resonant
band of the Mathieu–Duffing oscillator is

E
ðiþ1Þ
l � E

ðiÞ
l EQ0Q

ð2M:1Þ
l sin ji; jiþ1 � ji ¼

2pO
ol

¼
4O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðklÞ

2 � 1

q
KðklÞffiffiffiffiffi

a1
p : ð30Þ

The excitation strength for the onset of the ð2M:1Þ-resonant band is

Q0E
0:9716

Q
ð2M:1Þ
l G

ð2M:1Þ
l

; ð31Þ

where

G
ð2M:1Þ
l ¼ �

2Oa2½2ðk
ð2M:1Þ
l Þ2 � 1�5=2

ðkð2M:1Þ
l Þ2a21

ffiffiffiffiffi
a1

p Kðkð2M:1Þ
l Þ �

1� 2ðkð2M:1Þ
l Þ2

1� ðkð2M:1Þ
l Þ2

Eðkð2M:1Þ
l Þ

" #
: ð32Þ

The approximate condition for the disappearance of the ð2M:1Þ-resonant band is

Q0 ¼ min
1

Q
ð2M:1Þ
l

fjEð2M:1Þ
l � E

ð2M�2:1Þ
l j; jEð2M:1Þ

l � E
ð2Mþ2:1Þ
l jg: ð290Þ

4.3. Illustrations

The numerical and analytical predictions of excitation strengths for the onset and
disappearance of a specified resonant band for the Mathieu–Duffing oscillators are presented
in Fig. 2. The solid and dashed curves denote the analytical conditions for the onset and
destruction of the resonant band, respectively. The solid and hollow circular symbol curves
represent the numerical predictions of the onset and destruction of the resonant bands,
respectively. In Fig. 2(a), it is observed that the agreement between the two predictions is not very
good for the lower-order resonance partially because the unperturbed solution is used to obtain
the approximate analytical condition and partially because the sub-resonance is not considered. It
is very difficult to obtain the (5:1)-order and higher resonant bands by numerical predictions since
they are too close to the homoclinic orbit. For large orbit resonant bands, the two predictions do
not agree very well, as shown in Fig. 2(b). For strong excitations, the frequency ranges of the
resonant band become wider with a catastrophe. This is because a new sub-resonant web is
strongly involved in the resonant band. The sub-resonance influence on the large orbit resonant
motion is much stronger than on the small orbit resonant motion. For such a phenomenon, the
further mathematical model including the sub-resonance structures should be developed. For the
(2:1)-resonant band, it is very difficult to detect through the numerical prediction. Before such a
resonant band is formed, the sub-resonant webs already cause the resonant band to be destroyed
and the stochastic layer is formed for such a Mathieu–Duffing oscillator. For a given excitation
frequency, multi-values of excitation strength can be observed because the different-order
resonant motion can be induced by different excitation strengths with different initial conditions
(also see Ref. [24]).
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5. Numerical demonstrations

In this section, the resonant bands of the Mathieu–Duffing oscillator with a twin-well potential
are demonstrated for a better understanding of the resonant band dynamics. The resonant bands

ARTICLE IN PRESS

Excitation Frequency  Ω
0 1 2 3 4 5 6

E
xc

ita
tio

n 
St

re
ng

th
 Q

0

0.0

0.2

0.4

0.6

0.8

1.0

(M:1)=(1:1)

(2:1)

(4:1)

(3:1)

Excitation Frequency  Ω
1 2 3 4 5 6 7 8

E
xc

ita
tio

n 
St

re
ng

th
 Q

0

0.0

0.2

0.4

0.6

0.8

1.0

(2M:1)=(2:1)

(4:1)

(6:1)

(8:1)

(a)

(b)

Fig. 2. Analytical and numerical predictions of excitation strength for resonant bands relative to (a) the small orbit

motion in the potential wells, and (b) the large orbit motion outside the potential wells ða1 ¼ a2 ¼ 1Þ: The solid and

dashed curves denote the analytical conditions for the onset and destruction of the resonant band, respectively. The

solid and hollow circular symbol curves represent the numerical predictions of the onset and destruction of the resonant

bands, respectively.
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associated with the small and large orbit motions are illustrated through the Poincare mapping
sections in Figs. 3 and 4, respectively. The (1:1)-resonant band is simulated with the initial
condition (x0 ¼ 70:3815751898 and dx0=dt ¼ 0:) and excitation frequency and strength
(O ¼ 1:123544342 and Q0 ¼ 0:01), as shown in Fig. 3(a). The (1:1)-resonant bands in the left
and right wells are symmetric (also skew-symmetric). Their dynamic behaviors will be identical. In
Fig. 3(b), we consider Q0 ¼ 0:02 rather than Q0 ¼ 0:01 since for such excitation strength, the
(2:1)-resonant band is very thin, and the excitation frequency O ¼ 2:298928874 is used as well. To
make the resonant band identical, the corresponding initial conditions for the left and right wells
are x0 ¼ 70:7461745158 and dx0=dt ¼ 70:4967659648: Since the motion orbit is always
clockwise, the (2:1)-resonant bands between the left and right wells are skew-symmetric. This
characteristics for all the ðM:1Þ-resonant band of the orders higher than 1 (i.e., M > 1 ) should
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Fig. 3. Poincar!e mapping sections for resonant bands in potential wells: (a) ð1:1Þ-resonant band (O ¼ 1:123544342;
x0 ¼ 70:3815751898; dx0=dt ¼ 0:; Q0 ¼ 0:01), (b) (2:1)-resonant band (O ¼ 2:298928874; x0 ¼ 70:7461745158;
dx0=dt ¼ 70:4967659648; Q0 ¼ 0:02), (c) (3:1)-resonant band (O ¼ 3:652117934; x0 ¼ 71:033192846; dx0=dt ¼
70:5293606725; Q0 ¼ 0:1), (d) (4:1)-resonant band (O ¼ 4:657816650; x0 ¼ 71:1338433810; dx0=dt ¼
70:5401074783; Q0 ¼ 0:2). The dashed curve is the homoclinic orbit.
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exist. To further observe the higher order resonant bands, the (3:1)-resonant band with
parameters and initial conditions (O ¼ 3:652117934; Q0 ¼ 0:1 and x0 ¼ 71:033192846;
dx0=dt ¼ 70:5293606725) are computed, as shown in Fig. 3(c), and the (4:1)-resonant band is
simulated for parameters and initial conditions (O ¼ 4:657816650; Q0 ¼ 0:2 and x0 ¼
71:1338433810; dx0=dt ¼ 70:5401074783) in Fig. 3(d). The resonant band plots show the
resonant band features for different resonance orders. The island domains formed by the resonant
separatrix are the maximum resonant attractive domains once the damping is considered in such a
Mathieu–Duffing oscillator. Such an issue will be discussed in sequel. From the previous analysis,
the resonant bands relative to the small and large orbit motions are different, only the even order
resonant bands outside the potential wells exist. To demonstrate the even order resonant bands,
the (4:1)- and (6:1)-resonant bands are presented in Fig. 4 for Q0 ¼ 0:1: For the (4:1)-resonant
band, we consider the excitation frequency ðO ¼ 3:498195658Þ with the corresponding initial
conditions (x0 ¼ 1:6163080040 and dx0=dt ¼ 0:), as shown in Fig. 4(a). The resonant band is
symmetric, namely, the hyperbolic and parabolic points and the sub-resonance are distributed in
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Fig. 4. Poincar!e mapping sections for resonant bands relative to the large motion (Q0 ¼ 0:1): (a) (4:1)-resonant band
(O ¼ 3:498195658; x0 ¼ 1:6163080040; dx0=dt ¼ 0:), (b) (6:1)-resonant band (O ¼ 4:176975085; x0 ¼ 1:507578257;
dx0=dt ¼ 0:). The dashed curve is the homoclinic orbit.
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Poincare mapping sections. For the same excitation strength, the (6:1)-resonant band is computed
for the excitation frequency ðO ¼ 4:176975085Þ and the initial condition (x0 ¼ 1:507578257 and
dx0=dt ¼ 0:). It is observed that the (6:1)-resonant band is much closer to the homoclinic orbit
than the (4:1)-resonant band, and the bandwidth becomes much smaller. With increasing the
resonant order, the resonant separatrix bandwidth will decrease.

6. Conclusion

The dynamic characteristics of the ðM:1Þ- and ð2M:1Þ-resonant bands for the inside and outside
of the homoclinic orbit of the Mathieu–Duffing oscillator are investigated. The ðM:1Þ-resonant
bands in the left and right potential wells are skew-symmetric. The (2M:1)-resonant band
structure of the large orbit motion are symmetric in the Poincare mapping section. As the
excitation becomes strong, the analytical and numerical predictions for such (2M:1)-resonant
bands do not match each other well due to the approximate computation of the energy increment
and sub-resonance effects. When the excitation strength increase to some values, the sub-
resonance interaction occurs, which needs to be further investigated.
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